Finite-range scaling study of the 1D long-range Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 224439
(http://iopscience.iop.org/0305-4470/22/20/020)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:42

Please note that terms and conditions apply.

Finite-range scaling study of the 1 D long-range Ising model

Z Glumac and K Uzelac
Institute of Physics, University of Zagreb, Bijenička 46, POB 304, 41000 Zagreb, Croatia, Yugoslavia

Received 13 March 1989, in final form 25 May 1989

Abstract

The critical behaviour of the one-dimensional Ising model with long-range ferromagnetic interactions decaying with distance r as $1 / r^{1+\sigma}$ has been studied by scaling the range of interactions. Exact calculations have been done for a system with finite ranges up to the tenth neighbour for $0<\sigma \leqslant 1$. Applying the range scaling, the critical temperature, critical exponent ν and the anomalous dimension of the order parameter have been calculated. Additional analysis of the convergence of the method has been performed by applying the Vanden Broeck and Schwartz extrapolation procedure in addition to the simple least-squares approximation and by evaluating the convergence exponents.

1. Introduction

The study of the critical behaviour of systems with long-range (LR) interactions generally requires more complex approaches than for those with short-range (Sr) ones and is consequently less explored. Even such a simple model as the one-dimensional Ising model with the interactions decaying with distance r as $1 / r^{1+\sigma}$ has not been solved for arbitrary σ. Non-locality of interactions also limits approaches using the renormalisation group (RG) method. The RG in reciprocal space was efficient in giving results in the form of ε-expansions around lower (Fisher et al 1972) or higher (Brézin et al 1976, Kosterlitz 1976, Bulgadaev 1984) critical dimensions. However, a number of direct space RG techniques developed for the study of the intermediate region in the case of SR interactions become inefficient for LR interactions.

In a recent letter (Uzelac and Glumac 1988) we have formulated a renormalisation approach in direct space which takes the range of the interactions as a basic scaling parameter. By analogy with finite-size scaling (FSS) (Fisher and Barber 1972, Nightingale 1976, for a review see Barber 1983) exact results for the system considered but with different finite ranges have been used to establish the scaling relations involving the exponents for the infinite-range problem. Preliminary studies using this method have been made on the Ising model with long-range interactions, where the exact solution of the infinite system with interactions truncated to a finite number of neighbours is obtained by the transfer matrix.

In the present work we continue and extend those calculations in several respects. One is to include the study of an order parameter and corresponding anomalous dimension d_{ϕ}, which is related to the critic exponent η and can be checked using the analytic expression $\eta=2-\sigma$, conjectured to be valid in whole long-range region of the σ. Further on, we perform more exhaustive numerical calculations providing exact results up to the ranges involving the first ten neighbours. This creates the possibility of trying out different convergence techniques and also of carying out the analysis of
the convergence of results such as exists in the context of FsS (Privman and Fisher 1983).
The one-dimensional Ising model that we shall be considering is defined as

$$
\begin{equation*}
H=-\sum_{i, j} J_{i, j} s_{i} s_{j} \tag{1}
\end{equation*}
$$

where $s_{i}= \pm 1$ is a classical Ising spin at site i, and $J_{i, j}=J_{0} /|i-j|^{1+\sigma}>0$. When the parameter σ is varied this model passes through different critical regimes. For $0<\sigma \leqslant 1$ it is known rigorously that $T_{\mathrm{c}} \neq 0$ (Dyson 1969, Simon and Sokal 1981, Fröhlich and Spencer 1982) and the critical behaviour is of the long-range type. The region $\sigma<0.5$ corresponds to the mean-field (MF) region, while the region with $0.5<\sigma<1$ has a non-trivial critical behaviour which is not known exactly. Approximate results in the latter region were obtained by finite chain extrapolations (Nagle and Bonner 1970) or by ε-expansions around $\sigma=0.5$ (Fisher et al 1972) and $\sigma=1$ (Kosterlitz 1976). For $\sigma=1$ the transition is governed by topological defects and the critical behaviour is of the essential singularity type. The region with $\sigma>1$ corresponds to $T_{\mathrm{c}}=0$ with shortrange critical behaviour (Sak 1973).

The outline of the paper is the following. In the next section we explain the method of calculation and point out some differences between the present method and fss. Section 3 is the main part of this article, where the results are presented together with the convergence analysis. The first two sub-sections deal with the extrapolation methods used and the convergence analysis. The last three sub-sections are dedicated to study of the critical temperature, the critical exponent ν and the order parameter anomalous dimension d_{Φ} respectively. Concluding remarks are given in $\S 4$.

2. Method and calculations

2.1. Finite-range scaling

The idea of finite-range scaling (FRS) can be explained in the following way. Let us consider some physical quantity $C(t)$ of a system with long-range interactions J_{r}, exhibiting a singularity at the critical temperature T_{c}

$$
\begin{equation*}
C(t)=C_{0} t^{-\rho} \tag{2}
\end{equation*}
$$

where $t=\left(T-T_{\mathrm{c}}\right) / T_{\mathrm{c}}, C_{0}$ is a constant and ρ is the related critical exponent. Consider then the case where these interactions are truncated to the N th neighbour, i.e. $J_{r}=0$ for $r>N$. This truncation will prevent the divergence (2) from occurring, but one can assume that for large N the new, modified, behaviour can be described by introducing a correction factor to the infinite-range behaviour. Further, invoking the scaling hypothesis, we assume this correction to be a homogeneous function of range measured by the correlation length ξ_{∞} of the true long-range system, i.e.

$$
\begin{equation*}
C_{N}(t)=C_{\infty}(t) f\left(N / \xi_{\infty}\right) \tag{3}
\end{equation*}
$$

where subscripts N and ∞ indicate the range of interactions. It can also be written in an equivalent form

$$
\begin{equation*}
C_{N}(t)=N^{\omega} Y\left(N^{1 / \nu} t\right) \tag{4}
\end{equation*}
$$

where $\omega=\rho / \nu$ is the anomalous dimension of C. In order to obtain good asymptotic behaviour of $C_{N}(t)$ in the limits $t=$ constant, $N \rightarrow \infty$ and $t \rightarrow 0, N=$ constant, the
function $Y(x)$ has to satisfy additional constraints. When there is no phase transition in the short-range case, they can be written as

$$
\begin{equation*}
\lim _{x \rightarrow \infty} Y(x)=C_{0} x^{-\rho} \quad \lim _{x \rightarrow 0} Y(x)=Y_{0} \tag{5}
\end{equation*}
$$

where Y_{0} is a constant.
The assumption (3) formulated through equations (4) and (5) is analogous to the ansatz of finite-size scaling (Fisher and Barber 1972), in which case N denotes the finite length in one or more dimensions of the system.

One may then proceed to exploit equation (3) in complete analogy with fss. Applying equation (3) first to the correlation length leads to

$$
\begin{equation*}
\xi_{N}(t)=(N / M) \xi_{M}\left(t^{\prime}\right) \tag{6}
\end{equation*}
$$

where N and M are two different ranges. The variable t^{\prime} satisfies $\xi_{\infty}(t) / \xi_{\infty}\left(t^{\prime}\right)=N / M$ and is equal to

$$
\begin{equation*}
t^{\prime}=(N / M)^{1 / \nu} t . \tag{7}
\end{equation*}
$$

The fixed point is then determined by

$$
\begin{equation*}
\xi_{N}\left(t^{*}\right)=(N / M) \xi_{M}\left(t^{*}\right) \tag{8}
\end{equation*}
$$

Linearisation and expansion around t^{*} using (7) gives

$$
\begin{equation*}
\nu^{-1}=\ln \left[\xi_{N}^{\prime}\left(t^{*}\right) / \xi_{M}^{\prime}\left(t^{*}\right)\right] / \ln (N / M)-1 . \tag{9}
\end{equation*}
$$

In present calculations we chose $M=N-1$, since, as in FsS, the convergence of results is better when N and M are closer to each other.

Equation (3) can be similarly applied to the order parameter Φ. At the fixed point one obtains

$$
\begin{equation*}
\Phi_{N}\left(t^{*}\right) / \Phi_{M}\left(t^{*}\right)=(N / M)^{-d_{\phi}} \tag{10}
\end{equation*}
$$

where d_{ϕ} is the anomalous dimension of the order parameter in the true long-range system. As it describes the scaling of the order parameter at T_{c}, d_{ϕ} is directly related to the critical exponent η of the correlation function at T_{c} by the relation

$$
\begin{equation*}
d_{\phi}=(d-2+\eta) / 2 . \tag{11}
\end{equation*}
$$

In order to complete the analogy between FRS and fsS we should finally mention that, for the latter, the assumption of type (3) was later justified by ε-expansion calculations (Brézin 1982). In the present case such calculations become rather complex and we do not attempt them here.

2.2. Transfer matrix

The applicability of the above procedure depends on the possibility of determining the exact results used in equations (6) and (10).

For the Ising chain (1) with interactions truncated at N th neighbours as

$$
J_{r}= \begin{cases}J_{0} / r^{1+\sigma} & \text { for } r \leqslant N \tag{12}\\ 0 & \text { for } r>N\end{cases}
$$

exact calculations can be made by transfer matrix. As displayed in figure 1 , for a certain range N the chain can be divided into groups of N spins so that the transfer matrix connects neighbouring groups. It is practical to choose new N-component variables α_{j} such that $\alpha_{j}(i)=S_{N(j-1)+i}$. The transfer matrix for the Hamiltonian (1) then can be written in the form

$$
\begin{equation*}
\mathfrak{C}_{j, j+1}=\exp \left\{-\left[H_{j, j+1}+\left(H_{j}+H_{j+1}\right) / 2\right] / T\right\} \tag{13}
\end{equation*}
$$

where T is temperature (we choose the system of units where $J_{0} / k_{\mathrm{B}}=1$) and

$$
\begin{align*}
& H_{j, j+1}=-\sum_{n=0}^{N-1} J_{N-n} \sum_{i=1}^{N-n} \alpha_{j}(i) \alpha_{j+1}(i+n) \tag{14}\\
& H_{j}=-\sum_{n=1}^{N-1} J_{n} \sum_{i=1}^{N-n} \alpha_{j}(i) \alpha_{j}(i+n) . \tag{15}
\end{align*}
$$

The matrix © is not symmetric, but has instead a symmetry property which can be expressed by

$$
\begin{equation*}
\mathfrak{C}_{\alpha \beta}=\mathbb{C}_{\bar{\beta} \bar{\alpha}} \tag{16}
\end{equation*}
$$

where α and β denote configurations of neighbouring columns of N spins, while $\bar{\alpha}$ and $\bar{\beta}$ are the configurations obtained by counting spins in inverse order, i.e. $\bar{\alpha}(i)=$ $\alpha(N+1-i)$. In addition to this symmetry, \mathfrak{C} is invariant to the spin reversal which reduces the original configuration space to two invariant subspaces.

Eigenvalues λ_{i} and eigenvectors ψ_{i} of \mathbb{C} have to be determined numerically. The largest matrix calculated was of order 512 , which corresponds to the configurational subspace of $2^{N} / 2$ configurations for the range $N=10$.

Applying the standard derivation, one obtains the correlation length given by

$$
\begin{equation*}
\xi_{N}=N / \ln \left(\lambda_{1} / \lambda_{2}\right) \tag{17}
\end{equation*}
$$

where λ_{1} and λ_{2} are the largest and second-largest eigenvalues of \mathbb{C} respectively. The additional factor N results from the fact that the application of transfer matrix l times connects two spins at a distance $l N$.

When studying the order parameter, a similar problem arises as in Fss. Namely, the equation of type (10) cannot be applied directly to the magnetisation since $\left\langle\psi_{1}\right| s_{i}\left|\psi_{1}\right\rangle=0$ for every i whenever N is finite and becomes different from zero only by

Figure 1. Chain for the case $N=3$, drawn in zig-zag. Interactions J_{1}, J_{2} and J_{3} are represented by full, long-dashed and short-dashed lines respectively. α_{j} is a threecomponent variable describing all configurations of three spins in column j.
asymptotic degeneracy of the largest-eigenvalue state. Thus, as in FSS (Uzelac and Jullien 1981), we shall consider the quantity $\left\langle\psi_{2}\right| s_{i}\left|\psi_{1}\right\rangle$, which becomes equal to the magnetisation in the asymptotic limit $N \rightarrow \infty$. In addition, in order to diminish the other effects of truncation, it is convenient to consider an average over different positions of spin in a column α, i.e. we define

$$
\begin{equation*}
\Phi_{N}=\left\langle\psi_{2}\right| \sum_{i=1}^{N} s_{i}\left|\psi_{1}\right\rangle / N \tag{18}
\end{equation*}
$$

to be inserted in equation (10). Notice that left and right eigenvectors in equation (18) are not equal because the transfer matrix is not symmetric. However, due to symmetry property (16), transformation from right to left eigenvectors is easily made. If $\left|\psi_{j}\right\rangle=\Sigma_{\{\alpha\}} A_{\alpha}|\alpha\rangle$, then $\left\langle\psi_{j}\right|=\Sigma_{\{\bar{\alpha}\}} A_{\bar{\alpha}}\langle\alpha|$, where $A_{\bar{\alpha}}$ are the components corresponding to configurations $\bar{\alpha}$.

2.3. Mean-field region

When establishing the analogies between Frs and FSS, one important difference is to be noticed concerning the MF region. It has been shown (Brézin 1982) that FsS breaks down for dimensions where the MF regime takes place. Without resorting to the ε-expansion formalism, one can expect that the relevance of finite-size effects will be altered there, since in the mF region the critical behaviour does not depend on dimensionality. Indeed, the calculations on the $n=\infty$ vector model (Brézin 1982) confirm that finite-size corrections to the fss relation, analogous to equation (3), adopt a more complex form than a function of the simple ratio N / ξ_{∞}.

In the case of long-range interactions and frs, it is likely that the same problem will not occur, since even in the MF region critical behaviour depends strongly on the range of the interactions. Brézin's calculations are difficult to reproduce in the present case, but with the above reasoning in mind one can make a numerical check to see if $\xi_{N}\left(T_{\mathrm{c}}\right)$ depends linearly on N as required by the scaling ansatz (3), or otherwise. In table 1 are presented extrapolations for $\bar{\xi}_{N}=\xi_{N}\left(T_{\mathrm{c}}\right) / N$ of model (1) in the limit $N \rightarrow \infty$ by fitting to the form $\bar{\xi}_{N}\left(T_{c}\right)=B+A N^{-x}$. Comparing $\bar{\xi}_{N}$ and B for different σ, one can observe the linear behaviour with no difference between the non-trivial and the MF region. This reveals a definitely different behaviour to the fss case, suggesting

Table 1. $\bar{\xi}=\lim _{N \rightarrow \infty} \bar{\xi}_{N}\left(T_{\mathrm{ce}}\right)$ calculated by VBS approximation. B and x are obtained by LSA fit to the form $\bar{\xi}_{N}\left(T_{\mathrm{ce}}\right)=B+A N^{-x}$.

σ	$\bar{\xi}$	B	x
0.1	0.2431	0.2415	0.98
0.2	0.2965	0.2961	0.94
0.3	0.3497	0.3493	0.91
0.4	0.4028	0.4034	0.90
0.5	0.4620	0.4621	0.84
0.6	0.5289	0.5319	0.78
0.7	0.6290	0.6320	0.75
0.8	0.7889	0.7922	0.76
0.9	1.105	1.103	1.4
1.0	-	-	-

that equation (3) should still be valid and that the range should still be a good scaling variable.

One should mention here, however, that a problem of the same type arises in the FRS on the other edge of the non-trivial region ($\sigma>1$), where the range becomes an irrelevant variable (to be discussed in § 3).

3. Results

Before proceeding to the presentation and analysis of results, let us discuss shortly the extrapolation procedures used and the convergence analysis.

3.1. Extrapolation procedures

In an earlier paper dealing with data up to $N=8$, we have used one simple extrapolation procedure, fitting the curve in the least-squares approximation (LSA). Fitting was made to the form

$$
\begin{equation*}
\rho_{N}=\rho+A / N^{x_{\rho}} \tag{19}
\end{equation*}
$$

where ρ denotes the extrapolated quantity. In the MF region, the expression $(1 / N)^{x}$ was replaced by $[(N-1) / N]^{x}$. In the present paper the same type of extrapolation was performed using data for $N=8,9,10$.

In addition, we apply here another procedure due to Vanden Broeck and Schwartz (1979) (vBS). In order to speed up the convergence, Hamer and Barber (1981) have used it in FSS studies, making some adjustments which we follow here.

This procedure is a generalisation of the Padé approximant method. Successive approximations are given by the following recurrence relations:

$$
\begin{align*}
\{[N, L+1]- & {[N, L]\}^{-1}+\alpha_{L}\{[N, L-1]-[N, L]\}^{-1} } \\
& =\{[N+1, L]-[N, L]\}^{-1}+\{[N-1, L]-[N, L]\}^{-1} \tag{20}
\end{align*}
$$

where [N, L] is the L th-order extrapolation of ρ_{N}. In particular $[N, 0]=\rho_{N}$ and $[N,-1]=\infty$. The parameter α_{L} is free. For $\alpha_{L}=1$ the standard Padé approximants are reproduced. For the converging data of type

$$
\begin{equation*}
\rho_{N}^{-1}=\rho^{-1}+a_{1} N^{-\lambda_{1}}+a_{2} N^{-\lambda_{2}}+\ldots \tag{21}
\end{equation*}
$$

which is expected in our problem, it has been argued (Hamer and Barber 1981) that the best choice is $\alpha_{L}=\left((-1)^{L}-1\right) / 2$, giving a second-order correction of $\mathrm{O}\left(N^{-\lambda^{\prime}}\right)$ with $\lambda^{\prime}=\min \left(\lambda_{1}+2, \lambda_{2}\right)$.

Therefore, the obvious advantage of the vBS method compared with the previously defined method (LSA) is its appropriateness for extrapolating from a non-monotonic sequence of values where several corrections of different order are in competition. The efficiency of this procedure is, however, limited by the fact that it requires rather high numerical precision (six to eight digits) and a sufficiently large number of data. In the present study, one can expect it to be useful for determining T_{c} and d_{ϕ}, but less accurate or inapplicable for ν, where the data have been determined with less precision.

3.2. Convergence

The convergence of T_{c} and critical exponents as functions of N was extensively explored in the context of FSS. Within fsS those studies were also completed later by
application of conformal invariance theory (since most of the problems studied were in two dimensions). In the present case, this aspect of the problem will not be considered, but the analysis of convergence, important for the reliability of the results, still remains of interest.

From the scaling hypothesis it follows that in the case of power-law critical behaviour, the convergence will generally take the power-law form, the corresponding exponent x_{ρ} (cf equation (19)) being related to the leading irrelevant critical exponent y_{3}. If we write down the scaling ansatz (4) in the extended form which includes the leading irrelevant field u

$$
\begin{equation*}
C_{N}(t, u)=N^{\omega} Y\left(N^{1 / \nu} t, N^{y_{3}} u\right) \tag{22}
\end{equation*}
$$

and apply it to the correlation length, then simple algebra gives the following predictions for T_{c} and ν (Privman and Fisher 1983):

$$
\begin{align*}
& t_{N}=\left(T_{\mathrm{cN}}-T_{\mathrm{c}}\right) / T_{\mathrm{c}}=\text { constant } N^{y_{3}-1 / \nu} \tag{23}\\
& \nu_{N}^{-1}=\nu^{-1}+a N^{-1 / \nu} t_{N}+b N^{y_{3}}=\nu^{-1}+c N^{y_{3}} \tag{24}
\end{align*}
$$

where a, b, c are constants in N.
Similarly applying (22) to the order parameter, one obtains for d_{ϕ}

$$
\begin{equation*}
d_{\phi N}=d_{\phi}+\text { constant } N^{y_{3}} . \tag{25}
\end{equation*}
$$

The studies within fSS mentioned have most often found discrepancies between the analytic expressions predicted above and the convergence exponents calculated from finite-size data (Privman and Fisher 1983). This indicates the importance of other effects (boundary effects, other irrelevant fields) not included in equation (3).

3.3. Critical temperature

Data for $T_{c N}$ obtained from equation (8) for $N=4-10$ are presented in tables $2(a)$, $2(b)$ and $2(c)$ followed by vis extrapolations T_{ce} made for T_{cN}^{-1}. The numerical precision of data is 10^{-10}, so it is expected that vBs extrapolations could be used with sufficient accuracy. Indeed, successive approximations show good convergence as illustrated in table $3(a)$ for $\sigma=0.8$. The numerical error, which is of the same order for all the σ, is estimated to be less than $1 \% . T_{\mathrm{ce}}$ is compared to the Nagle and Bonner (1970) results after being normalised to the ground-state energy, equal to $J_{0} \zeta(1+\sigma)$ ($\zeta(x)$ is the Riemann zeta function). As shown in the last two rows of tables $2(a)$ and $2(b)$, the agreement is in the first three digits. The convergence exponent x_{T} defined by equation (19) has been calculated by inserting into equation (19) the vbs value T_{ce} for T_{c}. For $\sigma<0.9, x_{T}$ is close to unity, showing a small minimum around $\sigma=0.7$. For $\sigma \geqslant 0.9$ it increases abruptly. This is in strong opposition to prediction (23), since by $(1-\sigma)$ expansion (Kosterlitz 1976) we have

$$
\begin{equation*}
1 / \nu=-y_{3}=[2(1-\sigma)]^{1 / 2} \tag{26}
\end{equation*}
$$

and both y_{3} and $1 / \nu$ tend to zero when $\sigma \rightarrow 1$.
This feature can be related to the change of regime occurring at $\sigma=1$, beyond which point the range of interaction becomes irrelevant, and the short-range interaction type behaviour with $T_{\mathrm{c}}=0$ takes place. This is indicated by a change of the data $T_{\mathrm{c} N}$ from an ascending sequence to a descending one. The non-monotonic behaviour of $T_{c N}$ obviously makes the expression (19) inadequate for $\sigma>0.98$, but a calculation of the standard deviation from the form (19) (it increases by two orders of magnitude in this region) indicates that additional corrections are already important for $\sigma>0.9$.

Table 2. Data for $T_{\mathrm{c} N}$ as a function of σ and N, followed by the vBS extrapolations (T_{ce}), convergence exponent $\left(x_{T}\right)$ and normalised quantity $\bar{T}_{\mathrm{ce}}=T_{\mathrm{ce}} / \zeta(1+\sigma)$ for comparison with Nagle and Bonner (1970) results ($T_{\mathrm{c}}^{\mathrm{NB}}$).

N	$\sigma=0.1$	$\sigma=0.2$	$\sigma=0.3$	$\sigma=0.4$	$\sigma=0.5$
4	6.997367411	5.611779533	4.629356506	3.891164872	3.316754469
5	8.039577710	6.277235453	5.067902319	4.189990451	3.524000369
6	8.912257204	6.788288808	5.388764323	4.401040408	3.666537773
7	9.650044833	7.195123841	5.633847261	4.557682674	3.770199753
8	10.28677649	7.527692570	5.872116991	4.678277802	3.848723670
9	10.84490001	7.805171709	5.983345040	4.773783680	3.910091530
10	11.34010031	8.040499729	6.112158669	4.851146924	3.959254071
T_{ce}	19.81	10.84	7.341	5.511	4.3547
x_{T}	0.96	1.05	1.15	1.20	1.23
\bar{T}_{ce}	-	1.938	1.867	1.774	1.667
$T_{\mathrm{c}}^{\mathrm{NB}}$	-	1.931	1.857	1.764	1.659

(a)

N	$\sigma=0.52$	$\sigma=0.6$	$\sigma=0.7$	$\sigma=0.8$	$\sigma=0.9$
4	3.216819529	2.856826996	2.479717191	2.164280171	1.895948841
5	3.409571458	3.000663343	2.577384837	2.226683600	1.930148206
6	3.541533187	3.097471481	2.641704488	2.266464696	1.950222666
7	3.637181305	3.166799448	2.687095748	2.293897412	1.963114627
8	3.709447874	3.218714699	2.720736861	2.313882903	1.971929146
9	3.765810234	3.258929058	2.746600781	2.329047322	1.978240957
10	3.810888185	3.290920256	2.767061526	2.340920449	1.982924145
$T_{\text {ce }}$	4.1698	3.547	2.929	2.431	2.004
x_{T}	1.24	1.21	1.20	1.23	1.90
$\bar{T}_{\text {ce }}$	-	1.552	1.426	1.292	1.145
$T_{\mathrm{c}}^{\mathrm{NB}}$	-	1.545	1.420	1.288	1.145

(b)

N	$\sigma=0.92$	$\sigma=0.94$	$\sigma=0.96$	$\sigma=0.98$	$\sigma=1.0$
4	1.846973279	1.799395703	1.753154153	1.708190617	1.664450777
5	1.876150263	1.823720376	1.772783992	1.723271779	1.675119293
6	1.892680509	1.836810315	1.782527743	1.729754768	1.678419321
7	1.902924585	1.844469840	1.787658012	1.732403987	1.678629555
8	1.909677045	1.849197625	1.790391588	1.733167710	1.677442550
9	1.914331704	1.852215347	1.791786399	1.732948162	1.675612446
10	1.917649966	1.854177221	1.792394734	1.732200716	1.675302570
T_{ce}	1.928	1.858	1.7935	1.733	1.678
x_{T}	2.58	3.75	4.65	-	-

(c)

Table 3. Example of VBS extrapolation for (a) T_{cN}^{-1} and (b) $\nu_{N}\left(T_{\mathrm{c} N}\right)^{-1}$ at $\sigma=0.8$.

N	$[N, 0]$	$[N, 1]$	$[N, 2]$	$[N, 3]$
4	0.462047388			
5	0.449098381	0.428951615		
6	0.441215785	0.425256092	0.411489036	
7	0.435939286	0.422792387	0.411427297	0.411282231
8	0.432173987	0.421037831	0.411383989	
9	0.429360104	0.419727779		
10	0.427182393			

(a)

N	$[N, 0]$	$[N, 1]$	$[N, 2]$	$[N, 3]$
4	0.473885812			
5	0.469184435	0.459413997		
6	0.466010369	0.458171707	0.454319488	
7	0.463751125	0.457332871	0.454818067	0.454957397
8	0.462080090	0.456759995	0.454926965	
9	0.460808470	0.456356621		
10	0.459819374			

(b)

3.4. Critical exponent ν

Data for the critical exponent ν are obtained with less precision due to the numerical derivative involved in their evaluation. The accuracy does not exceed 10^{-6} and vBS extrapolations should be taken with caution.

We present two sets of results for the critical exponent ν. Data ν_{N} of the first set have been obtained by expanding around the true fixed point T_{cN} corresponding to t^{*} in equation (8). In the second set of ν_{N}, the expansion has been made around the extrapolated temperature T_{ce}. In both sets the two extrapolation procedures, LSA and vBS, have been performed for data ν_{N}^{-1}. The convergence exponent x_{ν} has been evaluated for each approximation method in particular, inserting the corresponding extrapolation for ν in equation (19). In the presentation of results (tables 4 and 5) only the decimal places which are larger than estimated error bars are retained. Data which could not be evaluated with sufficient precision are omitted.

The mF region where the exact results $\nu=1 / \sigma$ are available is presented in tables $4(a)$ and $5(a)$. For small σ the correction term in equation (24), which is proportional to t_{N}, becomes important, due to the slow convergence of T_{cN} (see table 2(a)). This is compensated by performing the calculations at $T_{\text {ce }}$ or by replacing $1 / N$ by $(N-1) / N$ in the LSA fit (19) as in our previous article. Except at the edge $\sigma=0.5$, good agreement within the relative error of less than 9% with exact results is achieved. Poor convergence observed in both cases for $\sigma=0.5$ is explained by the fact that the present method does not include logarithmic corrections which are important at the point of exchange of MF and the non-trivial fixed points. Concerning the convergence with regard to N, the corresponding exponent x_{ν} is rather low in the whole MF region.

The non-trivial region is presented in tables $4(b), 4(c)$ and $5(b), 5(c)$. Like in the MF region, the difference in results is more pronounced between the T_{cN} and T_{ce} sets,

Z Glumac and K Uzelac

Table 4. Data for ν_{N} calculated in T_{cN} as a function of σ and N, followed by LSA and VBS extrapolations for ν and for the corresponding convergence exponent $x_{\nu}, \nu_{1}^{\text {LSA }}$ and $x_{\nu}^{\text {LSA }}$ refer to the fit to $(1 / N)^{x}$ form, while $\nu_{2}^{\text {LSA }}$ results from the fit to the form $((N-1) / N)^{x}$ (see in text). For comparison we cite the exact results ($\nu^{\text {ex }}$), the Nagle and Bonner (1970) results (ν^{NB}) and Kosterlitz's (1976) results for ν and y_{3} (ν^{K} and y_{3}^{K} respectively).

N	$\sigma=0.1$	$\sigma=0.2$	$\sigma=0.3$	$\sigma=0.4$	$\sigma=0.5$
4	2.769599	2.499471	2.311649	2.185341	2.107728
5	3.021370	2.653906	2.405228	2.240506	2.139220
6	3.257788	2.792143	2.485683	2.286113	2.163931
7	3.478943	2.915822	2.555107	2.324165	2.183680
8	3.685798	3.026827	2.615422	2.356260	2.199726
9	3.879	518	3.126885	2.668215	2.383616
10	4.061253	3.217478	2.714755	2.407158	2.212948
10	-	-	4.2	2.23978	
$\nu_{1}^{\text {LSA }}$	-	4.90	3.41	2.9	2.37
$\nu_{2}^{\text {LSA }}$	9.12	7	3.8	2.71	2.34
$\nu^{\text {VBS }}$	-	5	3.3	2.5	2.32
$\nu^{\text {Vx }}$	10	-	5.0	3.37	2.65
$\nu^{\text {NB }}$	-	0.5	0.46	2.54	2.22
$x_{\nu}^{\text {LSA }}$	-	-	0.57	0.80	1.1
$x_{\nu}^{\text {VBS }}$	-				

(a)

N	$\sigma=0.52$	$\sigma=0.6$	$\sigma=0.7$	$\sigma=0.8$	$\sigma=0.9$
4	2.097317	2.071340	2.072470	2.110213	2.185851
5	2.125449	2.089963	2.087531	2.131358	2.224638
6	2.147211	2.103306	2.097361	2.145875	2.254241
7	2.164399	2.113173	2.104019	2.156329	2.277836
8	2.178221	2.120643	2.108634	2.164127	2.297242
9	2.189504	2.126397	2.111873	2.170099	2.313585
10	2.198832	2.130886	2.114151	2.174767	2.327606
$\nu_{1}^{\text {LSA }}$	2.31	2.16	2.123	2.208	2.63
$\nu^{\text {VBS }}$	2.26	2.15	2.119	2.198	2.63
$\nu^{\text {NB }}$	-	1.98	1.84	1.87	1.98
$x_{\nu}^{\text {LSA }}$	0.79	1.3	2.2	1.2	0.49
$x_{\nu}^{\text {VB }}$	1.3	2.0	3.4	1.7	0.48

(b)

N	$\sigma=0.92$	$\sigma=0.94$	$\sigma=0.96$	$\sigma=0.98$	$\sigma=1.0$
4	2.205763	2.227337	2.250604	2.275598	2.302354
5	2.249737	2.277121	2.306858	2.339015	2.373663
6	2.283929	2.316516	2.352110	2.390825	2.432779
7	2.311633	2.348923	2.389867	2.434630	2.483384
8	2.334753	2.376334	2.422199	2.472574	2.527692
9	2.354482	2.400003	2.450425	2.506037	2.567142
10	2.371161	2.420775	2.475439	2.535963	2.602721
$\nu_{\text {lSA }}^{\text {LSA }}$	2.84	3.2	3.8	4.96	8.4
$\nu_{\text {VS }}^{\text {VBS }}$	2.87	3.3	3.9	5.05	8.6
$\nu^{\text {K }}$	2.5	2.89	3.54	5	∞
$\nu^{\text {NB }}$	-	-	-	-	2.20
$x_{V}^{\text {LSA }}$	0.41	0.34	0.28	0.23	0.19
$\boldsymbol{x}_{\text {VBS }}$	0.38	0.31	0.26	0.22	0.19
y_{3}^{K}	0.4	0.346	0.283	0.2	0

(c)

Table 5. Data for ν_{N} calculated in T_{ce} as a function of σ and N, followed by LSA and vbs extrapolations. The notations used are the same as defined in table 4.

N	$\sigma=0.1$	$\sigma=0.2$	$\sigma=0.3$	$\sigma=0.4$	$\sigma=0.5$
4	-	25.326116	9.740774	6.393483	4.911925
5	-	14.634285	7.478902	5.301015	4.245221
6	55.801146	11.361485	6.441426	4.732547	3.872589
7	32.193529	9.769804	5.842530	4.381115	3.632084
8	24.386655	8.826697	5.451093	4.140967	3.462765
9	20.490863	8.201929	5.174421	3.965709	3.336402
10	18.154078	7.757068	4.968017	3.831711	3.238061
$\nu_{1}^{\text {LSA }}$	8.64	4.99	3.41	2.672	2.283
$\nu^{\text {VBS }}$	8.7	5.06	3.55	2.61	2.19
$\nu^{\text {ex }}$	10	5	3.3	2.5	2
$x_{\nu}^{\text {LSA }}$	0.96	0.89	0.79	0.71	0.65
$x_{\nu}^{\text {VBS }}$	0.95	0.92	0.90	0.67	0.57

(a)

N	$\sigma=0.52$	$\sigma=0.6$	$\sigma=0.7$	$\sigma=0.8$	$\sigma=0.9$
4	4.703184	4.080946	3.486780	3.017048	2.575332
5	4.092210	3.638834	3.198742	2.848652	2.506909
6	3.746776	3.379462	3.023878	2.746166	2.471810
7	3.522191	3.206814	2.904753	2.676407	2.452231
8	3.363250	3.082570	2.817515	2.625399	2.440885
9	3.244152	2.988286	2.750378	2.586201	2.434295
10	3.151161	2.913931	2.696807	2.554958	2.430619
$\nu_{1}^{\text {LSA }}$	2.228	2.134	2.102	2.242	2.424
$\nu^{\text {VBS }}$	2.06	2.06	2.05	2.16	2.425
$x_{\nu}^{\text {LSA }}$	0.63	0.63	0.63	0.79	4.18
$x_{\nu}^{\text {VBS }}$	0.50	0.55	0.57	0.61	4.64

(b)

N	$\sigma=0.92$	$\sigma=0.94$	$\sigma=0.96$	$\sigma=0.98$	$\sigma=1.0$
4	2.500271	2.442374	2.402853	2.371697	2.358362
5	2.450277	2.411097	2.391074	2.380053	2.388500
6	2.428781	2.404080	2.399861	2.405753	2.433303
7	2.420121	2.407482	2.416904	2.437811	2.482883
8	2.417972	2.415803	2.437412	2.472046	2.533564
9	2.419369	2.426529	2.459255	2.506664	2.583827
10	2.422780	2.438399	2.481412	2.540847	2.633029

(c)
than between the two extrapolation methods. For $\sigma>0.9$ (examined in more detail in tables $4(c)$ and $5(c)$) the results for $T_{\text {ce }}$ are non-monotonic and both extrapolation procedures turn out to be ineffective. In contrast to the MF case, there is no simple argument which would favour one of the two sets, and one can only speculate in favour of the set with the larger convergence exponent x_{ν}, but the above discrepancy extends the error bars to the order of 10%. For comparison we cite (tables $4(a), 4(b)$
and $4(c)$) the results for ν following from the values for the critical exponent γ obtained by finite chain extrapolations (Nagle and Bonner 1970).

The convergence exponent x_{ν} defined by (19) does not depend very significantly on the method of extrapolation, but rather its value and even dependence on σ is different for T_{cN} and T_{ce} sets of results. It shows faster convergence of T_{ce} data in the mF region, and T_{cN} data in the non-trivial region. It is interesting to point out that close to $\sigma=1$, values of x_{ν} follow (for $0.92 \leqslant \sigma \leqslant 0.96$) with less than 3% accuracy the predicted expression (26). On the other edge of the non-trivial region, $\sigma \geqslant 0.5, x_{\nu}$ shows a tendency to decrease but does not match y_{3}, which in this limit should be given by (Fisher et al 1972)

$$
\begin{equation*}
y_{3}=1-2 \sigma . \tag{27}
\end{equation*}
$$

The value $\sigma=1$ is identified again as a special point. The known essential singularity could not be reproduced using the present method, but a large exponent ν is obtained instead. The results were also not improved by applying the modified procedure of Roomany and Wylde (1980). This is again attributed to the fact that $\sigma=1$ is a rather

Table 6. Data for $d_{\phi N}$ calculated at T_{ce} presented as a function of N and σ, followed by the corresponding VBS extrapolations ($d_{\phi \mathrm{c}}$), vBS estrapolations for data taken at $T_{\mathrm{c} N}\left(d_{\phi \mathrm{c}}\right)$, exact values and convergence exponent (x_{ϕ}).

N	$\sigma=0.1$	$\sigma=0.2$	$\sigma=0.3$	$\sigma=0.4$	$\sigma=0.5$
4	0.2182005918	0.2361426318	0.2263244824	0.2065013176	0.1817042842
5	0.2697083717	0.2717678067	0.2529058466	0.2264331681	0.1962292562
6	0.3024322886	0.2945868756	0.2700074816	0.2392792559	0.2055775519
7	0.3250792327	0.3104753352	0.2819583213	0.2482748071	0.2121273899
8	0.3416879551	0.3221823523	0.2907903660	0.2549360795	0.2169843617
9	0.3543912184	0.3311699400	0.2975876469	0.2600719507	0.2207355993
10	0.3644224340	0.3382885292	0.3029825902	0.2641546823	0.2237230801
$d_{\text {de }}$	0.450	0.400	0.350	0.298	0.250
$d_{\text {oc }}$	0.455	0.401	0.352	0.300	0.242
exact	0.45	0.4	0.35	0.3	0.25
x_{ϕ}	0.87	0.90	0.90	0.88	0.84

(a)

N	$\sigma=0.6$	$\sigma=0.7$	$\sigma=0.8$	$\sigma=0.9$	$\sigma=0.98$	$\sigma=1.0$
4	0.1539457188	0.1243779968	0.0937041333	0.0624418211	0.0417307016	0.0373954443
5	0.1637432387	0.1299489553	0.0955161720	0.0611357208	0.0392919585	0.0348606375
6	0.1699903475	0.1333859154	0.0964301601	0.0599804314	0.0375356831	0.0330898764
7	0.1743488358	0.1357366042	0.0969610198	0.0590280219	0.0362481094	0.0318213718
8	0.1775758119	0.1374562702	0.0973019029	0.0582485451	0.0352813157	0.0308882099
9	0.1800679293	0.1387749749	0.0975378883	0.0576056182	0.0345395981	0.0301862955
10	0.1820541056	0.1398218729	0.0977110131	0.0570691906	0.0339602991	0.0296489965
$d_{\text {de }}$	0.200	0.148	0.098	0.055	0.031	0.028
$d_{\phi \mathrm{c}}$	0.200	0.142	0.100	0.054	0.029	0.025
exact	0.2	0.15	0.1	0.05	0.01	0.0
x_{ϕ}	0.78	0.70	0.63	-	-	-

sensitive point since the basic parameter upon which scaling is made becomes marginally relevant due to the exchange of relevance between long-range and short-range interactions (Sak 1973). The changing of regime manifests itself through several other features, such as, for instance, the non-monotonic sequence of T_{cN}, already mentioned in this paper (end of § 3.3).

3.5. Order parameter

Data for the anomalous dimension of the order parameter $d_{\phi N}$, defined by equation (10), have been evaluated at both characteristic temperatures T_{cN} and T_{ce}. Values of the $d_{\phi N}$ have been determined with the same precision as the critical temperature data. Both extrapolation methods have been applied. vbs extrapolations agree with the exact results to one decimal place better than LSA, so we present here only the former. In tables $6(a), 6(b)$, and $6(c)$ we present, for different σ, the data d_{ϕ} taken at $T_{\text {ce }}$, the corresponding vbs extrapolations and vbs extrapolations for the set of data taken at T_{cN}. For comparison, the conjectured exact value for d_{ϕ} corresponding to $\eta=2-\sigma$ is given. As can be seen, in the region $0<\sigma<0.9, d_{\phi}$ has been obtained with very good accuracy, with insignificant difference between results at T_{cN} and T_{ce}. Close to $\sigma=1$, however, the convergence deteriorates. One can also observe that at $\sigma=0.9$ the data become non-monotonic in N and for larger σ change into decreasing order. This suggests that the cause lies again in an exchange of relevances occurring at $\sigma=1$ as already mentioned within the discussion of the exponent ν. As far as the convergence exponent x_{ϕ} is concerned, the values presented have been obtained by inserting the exact value for d_{ϕ} into equation (19) and taking the data at $T_{\mathrm{cN}} . x_{\phi}$ has been evaluated only for $0<\sigma<0.9$ since for $\sigma>0.9$ the data do not fit the expression (19). In spite of very precise results for d_{ϕ}, it shows slow convergence. Agreement with prediction (25) has not been obtained.

4. Conclusion

In the present paper a more careful analysis of a recently defined finite-range scaling procedure has been performed, taking into account larger ranges and using additional convergence procedures.

A few facts can first be pointed out about the method itself in comparison with FSS, by analogy with which it was constructed.

One is the behaviour in the mF region. While fss breaks down in mf, this is not true for the frs. The reason lies in the relevance of the basic scaling parameter. In FSS the size ceases to be a good scaling parameter in the MF region, while within the FRS the range still remains a good onet.

Another one is the behaviour at the edge where the exchange of relevance between the long-range and the short-range interaction fixed points occurs. frs becomes inapplicable beyond this point, and close to it difficulties are to be expected. For the one-dimensional Ising model considered this point corresponds to $\sigma=1$.

[^0]Concerning the evaluation of critical exponents and T_{c} for the Ising model considered, rather good agreement with known exact or approximate results is achieved. Including further ranges up to 10 and using the vBs approximation method has improved the precision for T_{c} and d_{ϕ}. Results for the convergence exponent show that the convergence is generally rather slow although a fair precision is already reached for small ranges. As in the majority of fss cases, the convergence exponents do not fit to the values derived from first corrections to scaling. However, it is interesting to point out that in spite of general difficulties near $\sigma=1$, the convergence exponent x_{ν} manifests remarkably good agreement with this expected behaviour.

In summary we can conclude that the analysis performed on the one-dimensional Ising model shows that the method is reliable, which justifies the interest in applying it to other problems involving long-range interactions.

Acknowledgments

One of the authors (KU) acknowledges R Jullien for interesting and stimulating discussions. This work has been partially supported by YU-US collaboration program PN 738.

References

Barber M N 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (New York: Academic)
Botet R, Jullien R and Pfeuty P 1982 Phys. Rev. Lett. 49478
Brézin E 1982 J. Physique 4315
Brézin E, Zinn-Justin J and Le Guillou J C 1976 J. Phys. A: Math. Gen. 9 L119
Bulgadaev S A 1984 Phys. Lett. 102A 260
Dyson F J 1969 Commun. Math. Phys. 1291
Fisher M E and Barber M N 1972 Phys. Rev. Lett. 281516
Fisher M E, Ma S K and Nickel B G 1972 Phys. Rev. Lett. 29917
Fröhlich J and Spencer T 1982 Commun. Math. Phys. 8487
Hamer C J and Barber M N 1981 J. Phys. A: Math. Gen. 142009
Kosterlitz J M 1976 Phys. Rev. Lett. 371577
Nagle J F and Bonner J C 1970 J. Phys. C: Solid State Phys. 3352
Nightingale M P 1976 Physica 83A 561
Privman V and Fisher M E 1983 J. Phys. A: Math. Gen. 16 L295
Roomany H H and Wylde H W 1980 Phys. Rev. D 213341
Sak J 1973 Phys. Rev. B 8281
Simon B and Sokal A 1981 J. Stat. Phys. 25679
Uzelac K and Glumac Z 1988 J. Phys. A: Math. Gen. 21 L421
Uzelac K and Jullien R 1981 J. Phys. A: Math. Gen. 14 L151
Vanden Broeck J M and Schwartz L W 1979 SIAM J. Math. Anal. 10658

[^0]: \dagger Another example of this kind is a different generalisation of the FSS constructed by Botet et al (1982) for infinitely correlated systems $(\sigma=-1)$. The basic scaling parameter there is the number of particles, and the critical behaviour, which is of MF type by definition, is successfully described.

