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Finite-range scaling study of the ID long-range Ising model 
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Institute of Physics, University of Zagreb, BijeniEka 46, POB 304, 41000 Zagreb, Croatia, 
Yugoslavia 

Received 13 March 1989, in final form 25 May 1989 

Abstract. The critical behaviour of the one-dimensional Ising model with long-range 
ferromagnetic interactions decaying with distance r as l / r '+-  has been studied by scaling 
the range of interactions. Exact calculations have been done for a system with finite ranges 
up to the tenth neighbour for 0 < r S 1. Applying the range scaling, the critical temperature, 
critical exponent v and the anomalous dimension of the order parameter have been 
calculated. Additional analysis of the convergence of the method has been performed by 
applying the Vanden Broeck and Schwartz extrapolation procedure in addition to the 
simple least-squares approximation and by evaluating the convergence exponents. 

1. Introduction 

The study of the critical behaviour of systems with long-range ( LR) interactions generally 
requires more complex approaches than for those with short-range (SR) ones and is 
consequently less explored. Even such a simple model as the one-dimensional Ising 
model with the interactions decaying with distance r as l /r '+" has not been solved 
for arbitrary U. Non-locality of interactions also limits approaches using the renormali- 
sation group (RG)  method. The RG in reciprocal space was efficient in giving results 
in the form of &-expansions around lower (Fisher et a1 1972) or higher (BrCzin et a1 
1976, Kosterlitz 1976, Bulgadaev 1984) critical dimensions. However, a number of 
direct space RG techniques developed for the study of the intermediate region in the 
case of SR interactions become inefficient for LR interactions. 

In a recent letter (Uzelac and Glumac 1988) we have formulated a renormalisation 
approach in direct space which takes the range of the interactions as a basic scaling 
parameter. By analogy with finite-size scaling (FSS) (Fisher and Barber 1972, Nightin- 
gale 1976, for a review see Barber 1983) exact results for the system considered but 
with different finite ranges have been used to establish the scaling relations involving 
the exponents for the infinite-range problem. Preliminary studies using this method 
have been made on the Ising model with long-range interactions, where the exact 
solution of the infinite system with interactions truncated to a finite number of neigh- 
bours is obtained by the transfer matrix. 

In the present work we continue and extend those calculations in several respects. 
One is to include the study of an order parameter and corresponding anomalous 
dimension d,, which is related to the critic exponent r] and can be checked using the 
analytic expression 7 = 2 - U, conjectured to be valid in whole long-range region of 
the U. Further on, we perform more exhaustive numerical calculations providing exact 
results up to the ranges involving the first ten neighbours. This creates the possibility 
of trying out different convergence techniques and also of carying out the analysis of 
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the convergence of results such as exists in the context of FSS (Privman and Fisher 1983). 
The one-dimensional Ising model that we shall be considering is defined as 

where s, = *1 is a classical Ising spin at site i, and SI,, = Jo/li - j l '+r> 0. When the 
parameter U is varied this model passes through different critical regimes. For 0 < U G 1 
it is known rigorously that T, # 0 (Dyson 1969, Simon and Sokal 1981, Frohlich and 
Spencer 1982) and the critical behaviour is of the long-range type. The region U < 0.5 
corresponds to the mean-field (MF) region, while the region with 0 . 5 < a < l  has a 
non-trivial critical behaviour which is not known exactly. Approximate results in the 
latter region were obtained by finite chain extrapolations (Nagle and Bonner 1970) or 
by &-expansions around U = 0.5 (Fisher et a1 1972) and U = 1 (Kosterlitz 1976). For 
U = 1 the transition is governed by topological defects and the critical behaviour is of 
the essential singularity type. The region with U > 1 corresponds to T, = 0 with short- 
range critical behaviour (Sak 1973). 

The outline of the paper is the following. In the next section we explain the method 
of calculation and point out some differences between the present method and FSS. 

Section 3 is the main part of this article, where the results are presented together with 
the convergence analysis. The first two sub-sections deal with the extrapolation methods 
used and the convergence analysis. The last three sub-sections are dedicated to study 
of the critical temperature, the critical exponent Y and the order parameter anomalous 
dimension dQ respectively. Concluding remarks are given in 5 4. 

2. Method and calculations 

2.1. Finite-range scaling 

The idea of finite-range scaling (FRS) can be explained in the following way. Let us 
consider some physical quantity C( t )  of a system with long-range interactions J,., 
exhibiting a singularity at the critical temperature T, 

C ( t )  = c 0 t - p  

where t = ( T  - T,)/ T,, CO is a constant and p is the related critical exponent. Consider 
then the case where these interactions are truncated to the Nth  neighbour, i.e. J,. = 0 
for r > N. This truncation will prevent the divergence (2) from occurring, but one can 
assume that for large N the new, modified, behaviour can be described by introducing 
a correction factor to the infinite-range behaviour. Further, invoking the scaling 
hypothesis, we assume this correction to be a homogeneous function of range measured 
by the correlation length & of the true long-range system, i.e. 

where subscripts N and co indicate the range of interactions. It can also be written 
in an equivalent form 

C,(r)  = N " Y ( N " " t )  (4) 

where w = p /  Y is the anomalous dimension of C. In order to obtain good asymptotic 
behaviour of C , ( t )  in the limits t = constant, N + 00 and t + 0, N =constant, the 
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function Y ( x )  has to satisfy additional constraints. When there is no phase transition 
in the short-range case, they can be written as 

lim Y ( x )  = Coxwp lim Y ( x ) =  Yo ( 5 )  
X+O2 x-0 

where Yo is a constant. 
The assumption (3) formulated through equations (4) and ( 5 )  is analogous to the 

ansatz of finite-size scaling (Fisher and Barber 1972), in which case N denotes the 
finite length in one or more dimensions of the system. 

One may then proceed to exploit equation (3) in complete analogy with FSS. 

Applying equation (3) first to the correlation length leads to 

5 N ( t )  = ( N / M ) S M ( t ' )  (6) 

where N and M are two different ranges. The variable t' satisfies em( f ) / & (  t') = N /  M 
and is equal to 

t' = ( N /  M )  '""t. (7) 

The fixed point is then determined by 

& ( t * )  = ( N / M ) S M ( t * ) .  (8) 

Linearisation and expansion around t* using (7) gives 

v- '=ln[ ,$ 'N(t*) /&,( t*)] / ln(N/M) - 1. (9) 

In present calculations we chose M = N - 1, since, as in FSS, the convergence of results 
is better when N and M are closer to each other. 

Equation (3) can be similarly applied to the order parameter (0. At the fixed point 
one obtains 

( O N ( f * ) / ( O M ( f * ) = ( N / M ) - d +  (10) 

where d+ is the anomalous dimension of the order parameter in the true long-range 
system. As it describes the scaling of the order parameter at T,, d+ is directly related 
to the critical exponent q of the correlation function at T, by the relation 

d+ = ( d  - 2 +  q ) / 2 .  (11) 

In order to complete the analogy between FRS and FSS we should finally mention 
that, for the latter, the assumption of type (3) was later justified by &-expansion 
calculations (BrCzin 1982). In the present case such calculations become rather complex 
and we do not attempt them here. 

2.2. Transfer matrix 

The applicability of the above procedure depends on the possibility of determining 
the exact results used in equations (6) and (10). 

For the Ising chain (1) with interactions truncated at Nth neighbours as 

J, = {2'r"" for r S N  
for r >  N 
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exact calculations can be made by transfer matrix. As displayed in figure 1, for a 
certain range N the chain can be divided into groups of N spins so that the transfer 
matrix connects neighbouring groups. It is practical to choose new N-component 
variables aj such that a;( i )  = SN(J-I)+I. The transfer matrix for the Hamiltonian (1) 
then can be written in the form 

Q,,]+I =exp{-[H,,j+l+ (H, + q + i ) I 2 1 /  TI (13) 

where T is temperature (we choose the system of units where J o / k B  = 1) and 

(15) 
f l = l  1 = l  

The matrix Q is not symmetric, but has instead a symmetry property which can be 
expressed by 

where a and /3 denote configurations of neighbouring columns of N spins, while 6 
and p are the configurations obtained by counting spins in inverse order, i.e. 6(i)  = 
a(  N + 1 - i). In addition to this symmetry, Q is invariant to the spin reversal which 
reduces the original configuration space to two invariant subspaces. 

Eigenvalues A,  and eigenvectors $, of Q have to be determined numerically. The 
largest matrix calculated was of order 512, which corresponds to the configurational 
subspace of 2N/2  configurations for the range N = 10. 

Applying the standard derivation, one obtains the correlation length given by 

6 N  = N / 1 n ( A l / A 2 )  (17) 

where A I  and A 2  are the largest and second-largest eigenvalues of Q respectively. The 
additional factor N results from the fact that the application of transfer matrix 1 times 
connects two spins at a distance IN. 

When studying the order parameter, a similar problem arises as in FSS. Namely, 
the equation of type (10) cannot be applied directly to the magnetisation since 
($llsll$l) = 0 for every i whenever N is finite and becomes different from zero only by 

a,-! a, a,*] 

Figure 1. Chain for the case N = 3, drawn in zig-zag. Interactions J , ,  Jz and 5, are 
represented by full, long-dashed and short-dashed lines respectively. a, is a three- 
component variable describing all configurations of three spins in column j .  
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asymptotic degeneracy of the largest-eigenvalue state. Thus, as in FSS (Uzelac and 
Jullien 1981), we shall consider the quantity ($21s~l$l), which becomes equal to the 
magnetisation in the asymptotic limit N+co.  In addition, in order to diminish the 
other effects of truncation, it is convenient to consider an average over different positions 
of spin in a column a, i.e. we define 

to be inserted in equation (10). Notice that left and right eigenvectors in equation 
(18) are not equal because the transfer matrix is not symmetric. However, due to 
symmetry property (16), transformation from right to left eigenvectors is easily made. 
If l $ j ) = X i e )  Amla),  then ( G J l =  A,(al,  where A, are the components corresponding 
to configurations 5. 

2.3. Mean-jield region 

When establishing the analogies between FRS and FSS, one important difference is to 
be noticed concerning the M F  region. It has been shown (Brizin 1982) that FSS breaks 
down for dimensions where the M F  regime takes place. Without resorting to the 
&-expansion formalism, one can expect that the relevance of finite-size effects will be 
altered there, since in the M F  region the critical behaviour does not depend on 
dimensionality. Indeed, the calculations on the n =CO vector model (Brizin 1982) 
confirm that finite-size corrections to the FSS relation, analogous to equation (3), adopt 
a more complex form than a function of the simple ratio N / & .  

In the case of long-range interactions and FRS, it is likely that the same problem 
will not occur, since even in the M F  region critical behaviour depends strongly on the 
range of the interactions. BrCzin's calculations are difficult to reproduce in the present 
case, but with the above reasoning in mind one can make a numerical check to see if 
tN( T,) depends linearly on N as required by the scaling ansatz (3), or otherwise. In 
table 1 are presented extrapolations for cN = tN(  T J / N  of model (1) in the limit 
N +  CO by fitting to the form F N (  T,) = B+AN-" .  Comparing f N  and B for different 
a, one can observe the linear behaviour with no difference between the non-trivial and 
the M F  region. This reveals a definitely different behaviour to the FSS case, suggesting 

Table 1. c=lim,,, cv(Tce) calculated by VBS approximation. B and x are obtained by 
LSA fit to the form c,( T J =  B + A N - ' .  

ff F B X 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.243 1 
0.2965 
0.3497 
0.4028 
0.4620 
0.5289 
0.6290 
0.7889 
1.105 

0.2415 
0.2961 
0.3493 
0.4034 
0.4621 
0.5319 
0.6320 
0.7922 
1.103 

0.98 
0.94 
0.91 
0.90 
0.84 
0.78 
0.75 
0.76 
1.4 
- 
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that equation (3) should still be valid and that the range should still be a good scaling 
variable. 

One should mention here, however, that a problem of the same type arises in the 
FRS on the other edge of the non-trivial region (a> l),  where the range becomes an 
irrelevant variable (to be discussed in 0 3). 

3. Results 

Before proceeding to the presentation and analysis of results, let us discuss shortly 
the extrapolation procedures used and the convergence analysis. 

3.1. Extrapolation procedures 

In an earlier paper dealing with data up to N = 8, we have used one simple extrapolation 
procedure, fitting the curve in the least-squares approximation ( LSA). Fitting was made 
to the form 

pN = p + A / N ” p  (19) 
where p denotes the extrapolated quantity. In the MF region, the expression (1/ N)” 
was replaced by [( N - 1)/ NI”. In the present paper the same type of extrapolation 
was performed using data for N = 8,9, 10. 

In addition, we apply here another procedure due to Vanden Broeck and Schwartz 
(1979) (VBS). In order to speed up the convergence, Hamer and Barber (1981) have 
used it in FSS studies, making some adjustments which we follow here. 

This procedure is a generalisation of the Pad6 approximant method. Successive 
approximations are given by the following recurrence relations: 

{ [ N ,  L+l] - [N,  L]}-’+aL{[N, L-11-[N, L]}-’ 

= { [ N + 1, L] - [ N, L]}-’ + { [ N - 1, L] - [ N, L]}-’ (20) 
where [ N ,  L] is the Lth-order extrapolation of p N .  In particular [ N ,  01 = p N  and 
[ N, -11 = CO. The parameter aL is free. For aL = 1 the standard Pad6 approximants 
are reproduced. For the converging data of type 

p ~ ’ = p - ’ + a , N - ‘ ~ + a a , N - ’ 2 +  . .  . (21) 
which is expected in our problem, it has been argued (Hamer and Barber 1981) that 
the best choice is aL = ((-1)‘- 1)/2, giving a second-order correction of O(N-’”) with 
A ’  = min( A ,  + 2, A z ) .  

Therefore, the obvious advantage of the VBS method compared with the previously 
defined method ( LSA) is its appropriateness for extrapolating from a non-monotonic 
sequence of values where several corrections of different order are in competition. The 
efficiency of this procedure is, however, limited by the fact that it requires rather high 
numerical precision (six to eight digits) and a sufficiently large number of data. In 
the present study, one can expect it to be useful for determining T, and d,, but less 
accurate or inapplicable for v, where the data have been determined with less precision. 

3.2. Convergence 

The convergence of T, and critical exponents as functions of N was extensively 
explored in the context of FSS. Within FSS those studies were also completed later by 
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application of conformal invariance theory (since most of the problems studied were 
in two dimensions). In the present case, this aspect of the problem will not be 
considered, but the analysis of convergence, important for the reliability of the results, 
still remains of interest. 

From the scaling hypothesis it follows that in the case of power-law critical 
behaviour, the convergence will generally take the power-law form, the corresponding 
exponent xp (cf equation (19) )  being related to the leading irrelevant critical exponent 
y 3 .  If we write down the scaling ansatz ( 4 )  in the extended form which includes the 
leading irrelevant field U 

c N ( t ,  U ) =  N " Y ( N ' / " t ,  N ' ~ U )  ( 2 2 )  
and apply it to the correlation length, then simple algebra gives the following predictions 
for T, and v (Privman and Fisher 1983): 

t N  = ( TcN - Tc)/ T, = constant Ny3-'"' ( 2 3 )  

(24) = U-'+ aN"/''tN + bNY3 = v-' + ~ N y 3  

where a, b, c are constants in N. 
Similarly applying ( 2 2 )  to the order parameter, one obtains for d,  

d,N = d,  +constant Ny3. ( 2 5 )  
The studies within FSS mentioned have most often found discrepancies between 

the analytic expressions predicted above and the convergence exponents calculated 
from finite-size data (Privman and Fisher 1983). This indicates the importance of other 
effects (boundary effects, other irrelevant fields) not included in equation ( 3 ) .  

3.3. Critical temperature 

Data for TcN obtained from equation (8) for N = 4 - 1 0  are presented in tables 2 ( a ) ,  
2 ( b )  and 2(c)  followed by VBS extrapolations T,, made for T i ; .  The numerical 
precision of data is lo-", so it is expected that VBS extrapolations could be used with 
sufficient accuracy. Indeed, successive approximations show good convergence as 
illustrated in table 3 ( a )  for a = 0.8. The numerical error, which is of the same order 
for all the a, is estimated to be less than 1 '/o . T,, is compared to the Nagle and Bonner 
(1970) results after being normalised to the ground-state energy, equal to Jo5( 1 + a) 
(c(x) is the Riemann zeta function). As shown in the last two rows of tables 2 ( a )  and 
2 ( b ) ,  the agreement is in the first threg digits. The convergence exponent xT defined 
by equation (19) has been calculated by inserting into equation (19) the VBS value T,, 
for T,. For a < 0.9, xT is close to unity, showing a small minimum around a = 0.7. 
For a 3 0.9 it increases abruptly. This is in strong opposition to prediction ( 2 3 ) ,  since 
by ( 1  - a) expansion (Kosterlitz 1976) we have 

1 /  v = -y3 = [ 2 (  1 - U)]''* (26) 
and both y 3  and l / v  tend to zero when a+ 1 .  

This feature can be related to the change of regime occurring at a = 1 ,  beyond 
which point the range of interaction becomes irrelevant, and the short-range interaction 
type behaviour with T, = 0 takes place. This is indicated by a change of the data T,N 
from an ascending sequence to a descending one. The non-monotonic behaviour of 
TcN obviously makes the expression (19) inadequate for a > 0.98, but a calculation of 
the standard deviation from the form (19) (it increases by two orders of magnitude in 
this region) indicates that additional corrections are already important for (+ > 0.9. 
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Table 2. Data for TcN as a function of U and N, followed by the VBS extrapolations (T,,), 
convergence exponent ( x T )  and normalised quantity Tce = T,,/L(l+ U) for comparison 
with Nagle and Bonner (1970) results ( T r B ) .  

N U = 0.1 U = 0.2 U = 0.3 U = 0.4 U = 0.5 

4 6.997 367 41 1 5.611 779 533 4.629 356 506 3.891 164 872 3.316 754 469 
5 8.039 577 710 6.277 235 453 5.067 902 319 4.189990451 3.524 000 369 
6 8.912 257 204 6.788 288 808 5.388 764 323 4.401 040 408 3.666 537 773 
7 9.650 044 833 7.195 123 841 5.633 847 261 4.557 682 674 3.770 199 753 
8 10.286 776 49 7.527 692 570 5.872 116 991 4.678 277 802 3.848 723 670 
9 10.844 900 01 7.805 171 709 5.983 345 040 4.773 783 680 3.910 091 530 

10 11.340 100 31 8.040499 729 6.112 158 669 4.851 146924 3.959254071 

Tce 19.81 10.84 7.341 5.511 4.354 7 
XT 0.96 1.05 1.15 1.20 1.23 
T c e  - 1.938 1.867 1.774 1.667 
T:B - 1.931 1.857 1.764 1.659 

( a )  

N U = 0.52 U = 0.6 U = 0.7 U = 0.8 U = 0.9 

4 3.216 819 529 2.856 826 996 2.479 717 191 2.164280 171 1.895 948 841 
5 3.409 571 458 3.000 663 343 2.577 384 837 2.226 683 600 1.930 148 206 

1.950 222 666 6 3.541 533 187 3.097 471 481 2.641 704 488 
7 3.637 181 305 3.166 799 448 2.687 095 748 2.293 897 412 1.963 114 627 
8 3.709 447 874 3.218 714699 2.720 736 861 2.313 882 903 1.971 929 146 

1.978 240 957 9 3.765 810 234 3.258 929 058 2.746 600 781 
10 3.810 888 185 3.290 920 256 2.767 061 526 2.340 920 449 1.982 924 145 

2.266 464 696 

2.329 047 322 

T,, 4.169 8 3.547 2.929 2.431 2.004 
XT 1.24 1.21 1.20 1.23 1.90 
T c e  - 1.552 1.426 1.292 1.145 
T,NB - 1.545 1.420 1.288 1.145 

N U = 0.92 

1.846 973 279 
1.876 150263 
1.892 680 509 
1.902 924 585 
1.909 677 045 
1.914331 704 
1.917 649 966 

Tce 1.928 
XT 2.58 

U = 0.94 

1.799 395 703 
1.823 720 376 
1.836 810 315 
1.844 469 840 
1.849 197 625 
1.852 215 347 
1.854 177 221 

1.858 
3.75 

U = 0.96 U = 0.98 U =  1.0 

1.753 154 153 1.708 190 617 1.664 450 777 
1.772 783 992 1.723 271 779 1.675 119 293 
1.782 527 743 1.729 754 768 1.678 419 321 
1.787 658 012 1.732 403 987 1.678 629 555 
1.790391 588 1.733 167 710 1.677 442 550 
1.791 786 399 1.732 948 162 1.675 612 446 
1.792 394 734 1.732200716 1.675 302 570 

1.793 5 1.733 1.678 
4.65 - - 
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Table 3. Example of VBS extrapolation for ( a )  Ti;  and ( b )  v Z I ( T c N ) - '  at CT =0.8. 

4 0.462 047 388 
5 0.449 098 381 0.428 951 615 
6 0.441 215 785 0.425 256 092 0.41 1 489 036 
7 0.435 939 286 0.422 792 387 0.41 1 427 297 0.411 282 231 
8 0.432 173 987 0.421 037 831 0.41 1 383 989 
9 0.429 360 104 0.419 727 779 

10 0.427 182 393 

N 

0.473 885 812 
0.469 184 435 0.459 413 997 
0.466 010 369 0.458 171 707 0.454 319 488 
0.463 751 125 0.457 332 871 0.454 818 067 0.454 957 397 
0.462 080 090 0.456 759 995 0.454 926 965 
0.460 808 470 0.456 356 621 
0.459 819 374 

3.4. Critical exponent v 

Data for the critical exponent v are obtained with less precision due to the numerical 
derivative involved in their evaluation. The accuracy does not exceed and VBS 

extrapolations should be taken with caution. 
We present two sets of results for the critical exponent v. Data vN of the first set 

have been obtained by expanding around the true fixed point TcN corresponding to 
t" in equation (8). In the second set of vN,  the expansion has been made around the 
extrapolated temperature T,, . In both sets the two extrapolation procedures, LSA and 
VBS, have been performed for data v&'. The convergence exponent x, has been 
evaluated for each approximation method in particular, inserting the corresponding 
extrapolation for v in equation (19). In the presentation of results (tables 4 and 5 )  
only the decimal places which are larger than estimated error bars are retained. Data 
which could not be evaluated with sufficient precision are omitted. 

The M F  region where the exact results v = l/a are available is presented in tables 
4(a)  and 5(a ) .  For small a the correction term in equation (24), which is proportional 
to f N ,  becomes important, due to the slow convergence of TcN (see table 2(a)).  This 
is compensated by performing the calculations at T,, or by replacing 1/ N by ( N  - 1 ) / N  
in the LSA fit (19) as in our previous article. Except at the edge a = 0.5, good agreement 
within the relative error of less than 9% with exact results is achieved. Poor convergence 
observed in both cases for a=0.5 is explained by the fact that the present method 
does not include logarithmic corrections which are important at the point of exchange 
of M F  and the non-trivial fixed points. Concerning the convergence with regard to N, 
the corresponding exponent x, is rather low in the whole M F  region. 

The non-trivial region is presented in tables 4( b ) ,  4( c)  and 5 (  b ) ,  5 (  c). Like in the 
M F  region, the difference in results is more pronounced between the TcN and T,, sets, 
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Table 4. Data for vW calculated in T,, as a function of U and N, followed by LSA and 
VBS extrapolations for v and for the corresponding convergence exponent xu .  vkSA and 
xbSA refer to the fit to (1/ N) '  form, while vksA results from the fit to the form ( ( N  - l ) /N) '  
(see in text). For comparison we cite the exact results (U'"), the Nagle and Bonner (1970) 
results ( v N B )  and Kosterlitz's (1976) results for v and y ,  ( v K  and y: respectively). 

N U = 0.1 U = 0.2 U = 0.3 U = 0.4 U = 0.5 

4 2.769 599 2.499 471 2.31 1 649 2.185 341 2.107 728 
5 3.021 370 2.653 906 2.405 228 2.240 506 2.139 220 
6 3.257 788 2.792 143 2.485 683 2.286 113 2.163 931 

2.183 680 7 3.478 943 2.915 822 2.555 107 2.324 165 
8 3.685 798 3.026 827 2.615 422 2.356 260 2.199 726 

2.383 616 2.212 948 9 3.879 518 3.126 885 2.668 215 
10 4.061 253 3.217 478 2.714 755 2.407 158 2.223 978 

I 4.2 2.9 2.37 - - ULSA 

lJy* 9.12 4.90 3.41 2.71 2.34 
- I 3.8 2.7 2.32 v v B s  

V e x  10 5 3.3 2.5 2 
- 5.0 3.37 2.65 2.22 
- - 0.46 0.54 0.72 X"  
- 0.5 0.57 0.80 1.1 

LSA 

x v B s  

N u = 0.52 

2.097 3 17 
2.125 449 
2.147 211 
2.164 399 
2.178 221 
2.189 504 
2.198 832 

U = 0.6 

2.071 340 
2.089 963 
2.103 306 
2.113 173 
2.120 643 
2.126 397 
2.130 886 

U = 0.7 

2.072 470 
2.087 531 
2.097 361 
2.104019 
2.108 634 
2.111 873 
2.114 151 

U = 0.8 

2.110 213 
2.131 358 
2.145 875 
2.156 329 
2.164 127 
2.170 099 
2.174 767 

U = 0.9 

2.185 851 
2.224 638 
2.254 241 
2.277 836 
2.297 242 
2.313 585 
2.327 606 

1 2.31 2.16 2.123 2.208 2.63 ,,LSA 

2.26 2.15 2.119 2.198 2.63 
v N B  - 1.98 1.84 1.87 1.98 

0.79 1.3 2.2 1.2 0.49 
1.3 2.0 3.4 1.7 0.48 

v v B s  

XLSA 

v BS 

( b )  

N U = 0.92 U = 0.94 U = 0.96 U = 0.98 U = 1.0 

4 2.205 763 2.227 337 2.250 604 2.275 598 2.302 354 
5 2.249 737 2.277 121 2.306 858 2.339 015 2.373 663 
6 2.283 929 2.316 516 2.352 110 2.390 825 2.432 779 
7 2.31 1 633 2.348 923 2.389 867 2.434 630 2.483 384 
8 2.334 753 2.376 334 2.422 199 2.472 574 2.527 692 
9 2.354 482 2.400 003 2.450 425 2.506 037 2.567 142 

10 2.371 161 2.420 775 2.475 439 2.535 963 2.602 721 

1 2.84 3.2 3.8 4.96 8.4 vLSA 

2.87 3.3 3.9 5.05 8.6 *VBS 

V K  2.5 2.89 3.54 5 CO 
V N B  - 

Y: 0.4 0.346 0.283 0.2 0 

- - - 2.20 
0.41 0.34 0.28 0.23 0.19 

X p s  0.38 0.31 0.26 0.22 0.19 
XLSA 
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Table 5. 
VBS extrapolations. The notations used are the same as defined in table 4. 

Data for v N  calculated in T,, as a function of U and N, followed by LSA and 

N u=o.1 

- 
55.801 146 
32.193 529 
24.386 655 
20.490 863 
18.154078 

U = 0.2 

25.326 116 
14.634 285 
11.361 485 
9.769 804 
8.826 697 
8.201 929 
7.757 068 

U = 0.3 

9.740 774 
7.478 902 
6.441 426 
5.842 530 
5.451 093 
5.174 42 1 
4.968 017 

U = 0.4 

6.393 483 
5.301 015 
4.732 547 
4.381 115 
4.140 967 
3.965 709 
3.831 711 

U = 0.5 

4.91 1 925 
4.245 221 
3.872 589 
3.632 084 
3.462 765 
3.336 402 
3.238 061 

1 8.64 4.99 3.41 2.672 2.283 ,,LSA 

"VBS 8.7 5.06 3.55 2.61 2.19 
vex  10 5 3.3 2.5 2 

0.96 0.89 0.79 0.71 0.65 X" 
xvBs 0.95 0.92 0.90 0.67 0.57 

LSA 

N U = 0.52 

4.703 184 
4.092 210 
3.746 776 
3.522 191 
3.363 250 
3.244 152 
3.151 161 

U = 0.6 

4.080 946 
3.638 834 
3.379 462 
3.206 814 
3.082 570 
2.988 286 
2.913 931 

U = 0.7 

3.486 780 
3.198 742 
3.023 878 
2.904 753 
2.817 515 
2.750 378 
2.696 807 

U = 0.8 

3.017 048 
2.848 652 
2.746 166 
2.676 407 
2.625 399 
2.586 201 
2.554 958 

U = 0.9 

2.575 332 
2.506 909 
2.471 810 
2.452 231 
2.440 885 
2.434 295 
2.430 619 

I 2.228 2.134 2.102 2.242 2.424 vLSA 

,,VBS 

XLSA 
2.06 2.06 2.05 2.16 2.425 
0.63 0.63 0.63 0.79 4.18 
0.50 0.55 0.57 0.61 4.64 xvBs 

N U = 0.92 U = 0.94 U = 0.96 U = 0.98 U =  1.0 

4 2.500 271 2.442 374 2.402 853 2.371 697 2.358 362 
5 2.450 217 2.41 1 097 2.391 074 2.380 053 2.388 500 
6 2.428 781 2.404 080 2.399 861 2.405 753 2.433 303 
7 2.420 121 2.407 482 2.416 904 2.437 81 1 2.482 883 
8 2.417 972 2.415 803 2.437 412 2.472 046 2.533 564 
9 2.419 369 2.426 529 2.459 255 2.506 664 2.583 827 

10 2.422 780 2.438 399 2.481 412 2.540 847 2.633 029 

than between the two extrapolation methods. For U > 0.9 (examined in more detail 
in tables 4(c) and 5 ( c ) )  the results for T,, are non-monotonic and both extrapolation 
procedures turn out to be ineffective. In contrast to the M F  case, there is no simple 
argument which would favour one of the two sets, and one can only speculate in 
favour of the set with the larger convergence exponent x,, but the above discrepancy 
extends the error bars to the order of 10%. For comparison we cite (tables 4(a), 4(b) 
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and 4( c)) the results for Y following from the values for the critical exponent y obtained 
by finite chain extrapolations (Nagle and Bonner 1970). 

The convergence exponent x, defined by (19) does not depend very significantly 
on the method of extrapolation, but rather its value and even dependence on u is 
different for TcN and T,, sets of results. It shows faster convergence of T,, data in 
the M F  region, and TcN data in the non-trivial region. It is interesting to point out 
that close to u = 1, values of x, follow (for 0.92 s u s  0.96) with less than 3% accuracy 
the predicted expression (26). On the other edge of the non-trivial region, U 2 0.5, x, 
shows a tendency to decrease but does not match y , ,  which in this limit should be 
given by (Fisher et a1 1972) 

y ,  = 1 - 2u. (27) 

The value u = 1 is identified again as a special point. The known essential singularity 
could not be reproduced using the present method, but a large exponent v is obtained 
instead. The results were also not improved by applying the modified procedure of 
Roomany and Wylde (1980). This is again attributed to the fact that u = 1 is a rather 

Table 6. Data for dm,  calculated at T,, presented as a function of N and U, followed by 
the corresponding VBS extrapolations (dde) ,  VBS estrapolations for data taken at T,, ( d d c ) ,  
exact values and convergence exponent (x,). 

N u = o . 1  U = 0.2 U = 0.3 U = 0.4 U = 0.5 

4 0.218 200 5918 0.236 142 6318 0.226 3244824 0.206 501 3176 0.181 704 2842 
5 0.269 708 3717 0.271 767 8067 0.252 905 8466 0.226 433 1681 0.196 229 2562 
6 0.302 432 2886 0.294 586 8756 0.270 007 4816 0.239 279 2559 0.205 577 5519 
7 0.325 079 2327 0.310 475 3352 0.281 958 3213 0.248 274 8071 0.212 127 3899 
8 0.341 687 9551 0.322 182 3523 0.290 790 3660 0.254 936 0795 0.216 984 3617 
9 0.354 391 2184 0.331 169 9400 0.297 587 6469 0.260 071 9507 0.220 735 5993 

10 0.364 422 4340 0.338 288 5292 0.302 982 5902 0.264 154 6823 0.223 723 0801 

d*e 0.450 0.400 0.350 0.298 0.250 
d*c 0.455 0.401 0.352 0.300 0.242 
exact 0.45 0.4 0.35 0.3 0.25 
Xd 0.87 0.90 0.90 0.88 0.84 

U =  1.0 U = 0.98 N U = 0.6 U = 0.7 U = 0.8 U = 0.9 

0.153 945 7188 
0.163 743 2387 
0.169 990 3475 
0.174348 8358 
0.177 575 8119 
0.180 067 9293 
0.182 054 1056 

0.200 
0.200 
0.2 
0.78 

0.124 377 9968 
0.129 948 9553 
0.133 385 9154 
0.135 736 6042 
0.137 456 2702 
0.138 774 9749 
0.139 821 8729 

0.148 
0.142 
0.15 
0.70 

0.093 704 1333 
0.095 516 1720 
0.096 430 1601 
0.096 961 0198 
0.097 301 9029 
0.097 537 8883 
0.097 711 0131 

0.098 
0.100 
0.1 
0.63 

0.062 441 8211 
0.061 135 7208 
0.059 980 4314 
0.059 028 0219 
0.058 248 5451 
0.057 605 6182 
0.057 069 1906 

0.055 
0.054 
0.05 
- 

0.041 730 7016 
0.039 291 9585 
0.037 535 6831 
0.036 248 1094 
0.035 281 3157 
0.034 539 5981 
0.033 960 2991 

0.031 
0.029 
0.01 
- 

0.037 395 4443 
0.034 860 6375 
0.033 089 8764 
0.031 821 3718 
0.030 888 2099 
0.030 186 2955 
0.029 648 9965 

0.028 
0.025 
0.0 
- 
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sensitive point since the basic parameter upon which scaling is made becomes mar- 
ginally relevant due to the exchange of relevance between long-range and short-range 
interactions (Sak 1973). The changing of regime manifests itself through several other 
features, such as, for instance, the non-monotonic sequence of T c N ,  already mentioned 
in this paper (end of B 3.3). 

3.5. Order parameter 

Data for the anomalous dimension of the order parameter d,N,  defined by equation 
(lo), have been evaluated at both characteristic temperatures TcN and Tee. Values of 
the d4N have been determined with the same precision as the critical temperature data. 
Both extrapolation methods have been applied. VBS extrapolations agree with the 
exact results to one decimal place better than LSA, so we present here only the former. 
In tables 6 ( a ) ,  6 ( b ) ,  and 6 ( c )  we present, for different U, the data d ,  taken at T,,, the 
corresponding VBS extrapolations and VBS extrapolations for the set of data taken at 
T c N .  For comparison, the conjectured exact value for d ,  corresponding to 17 = 2 - U 

is given. As can be seen, in the region O<u<0.9, d, has been obtained with very 
good accuracy, with insignificant difference between results at TcN and Tee. Close to 
U = 1, however, the convergence deteriorates. One can also observe that at U = 0.9 the 
data become non-monotonic in N and for larger U change into decreasing order. This 
suggests that the cause lies again in an exchange of relevances occurring at U = 1 as 
already mentioned within the discussion of the exponent v. As far as the convergence 
exponent x, is concerned, the values presented have been obtained by inserting the 
exact value for d, into equation (19) and taking the data at T c N .  x6 has been evaluated 
only for 0 < U < 0.9 since for U > 0.9 the data do not fit the expression (19). In spite 
of very precise results for d,, it shows slow convergence. Agreement with prediction 
( 2 5 )  has not been obtained. 

4. Conclusion 

In the present paper a more careful analysis of a recently defined finite-range scaling 
procedure has been performed, taking into account larger ranges and using additional 
convergence procedures. 

A few facts can first be pointed out about the method itself in comparison with 
FSS, by analogy with which it was constructed. 

One is the behaviour in the M F  region. While FSS breaks down in MF, this is not 
true for the FRS. The reason lies in the relevance of the basic scaling parameter. In 
FSS the size ceases to be a good scaling parameter in the M F  region, while within the 
FRS the range still remains a good onet. 

Another one is the behaviour at the edge where the exchange of relevance between 
the long-range and the short-range interaction fixed points occurs. FRS becomes 
inapplicable beyond this point, and close to it difficulties are to be expected. For the 
one-dimensional Ising model considered this point corresponds to U = 1. 

t Another example of this kind is a different generalisation of the FSS constructed by Botet et a/ (1982) for 
infinitely correlated systems (cr = -1). The basic scaling parameter there is the number of particles, and the 
critical behaviour, which is of M F  type by definition, is successfully described. 
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Concerning the evaluation of critical exponents and T, for the Ising model con- 
sidered, rather good agreement with known exact or approximate results is achieved. 
Including further ranges up to 10 and using the VBS approximation method has 
improved the precision for T, and d+. Results for the convergence exponent show 
that the convergence is generally rather slow although a fair precision is already reached 
for small ranges. As in the majority of FSS cases, the convergence exponents do not 
fit to the values derived from first corrections to scaling. However, it is interesting to 
point out that in spite of general difficulties near (T = 1, the convergence exponent x, 
manifests remarkably good agreement with this expected behaviour. 

In summary we can conclude that the analysis performed on the one-dimensional 
Ising model shows that the method is reliable, which justifies the interest in applying 
it to other problems involving long-range interactions. 
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